In the extreme sport of Big Wave Surfing, surfers ride specially-designed surfboards known as “Rhino Chasers”. Designed for speed and stability, Rhino Chasers allow the surfer to drop down the face of the tube and generate enough speed to stay ahead of the crest. These waves can reach upwards of 80-100 feet, and the surfers riding them can reach speeds of 50 mph. To these elite surfers, speed and stability are crucial, allowing them to catch that monster wave, ride it, and ultimately survive it.
Big wave surfboard designs tend to concentrate on hydrodynamics, focusing primarily where the board comes in contact with the water. In contrast, the aerodynamics of the board above the water line are often disregarded. By optimizing the aerodynamic performance of a surfboard, higher speeds and improved stability can be realized.
Working with one of the world's top big wave board shapers, engineers at CRAFT Tech have applied computational fluid dynamics (CFD) within a design optimization process, employing a genetic algorithm to evolve the design of a big wave surfboard. By using the meshing tools provided by Pointwise, and automating the process using Glyph scripting, a large design space was explored to aerodynamically optimize the board’s
Topics covered in the webinar:
Travis Carrigan joined Pointwise as a senior engineer after completing his M.S. in aerospace engineering at The University of Texas at Arlington in May 2011 where his graduate research involved aerodynamic design optimization. He interned at Pointwise beginning May 2008, producing demonstration and application videos and working in technical support, doing grid projects and quality assurance testing. During a prior internship at Vought Aircraft Industries, Mr. Carrigan worked as a quality engineer on the Boeing 787 Dreamliner Program. As a senior engineer at Pointwise, Mr. Carrigan works with clients to strengthen their CFD processes by developing interactive and automated meshing solutions.
Stephen Barr joined CRAFT Tech as a Research Scientist, after graduating with a Bachelor’s Degree in Aerospace Engineering from Penn State University in 2012. Mr. Barr is currently pursuing a Master’s Degree in Mechanical Engineering at Lehigh University. Since joining CRAFT Tech, Mr. Barr has been involved in a variety of problems, including LES simulations of cavity flows and dynamic store releases. Stephen has also been involved in optimization studies regarding the efficiency of supersonic inlets, mitigation of dynamic stall for rotorcraft airfoils, and reduction of drag and radar cross-section for a body.
Copyright © 1996-2021 Pointwise, Inc.
Legal Notices
Privacy Policy
webmaster@pointwise.com